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Abstract 

In some recent papers [Giacovazzo, Burla & Cascarano 
(1992). Acta Cryst. A48, 901-906; Burla, Cascarano 
& Giacovazzo (1992). Acta Cryst. A48, 906-912; 
Cascarano, Giacovazzo, Moliterni & Polidori (1994). 
Acta Cryst. A50, 22-27], the method of the joint 
probability distribution of structure factors has been 
used to define a function that is frequently a maximum 
for the correct structure. Such a function was the basis for 
a modified tangent formula using P10 (negative and 
positive) triplet estimates and negative quartet estimates, 
which proved more efficient than the classical tangent 
formula of Karle & Hauptman [Acta Cryst. (1956), 9, 
635-651]. The method is here combined with a recent 
formulation [Giacovazzo (1993). Z. Kristallogr. 206, 
161-171], which suggests the supplementary active use 
in the phasing process of psi-zero triplets. Experimental 
tests prove the higher efficiency of the method and justify 
the default active use of psi-zero relationships in SIR92. 

Symbols and notation 

Symbols and notation are the same as in the following 
papers; Giacovazzo, Burla & Cascarano (1992); Burla, 
Cascarano & Giacovazzo (1992); Cascarano, Giaco- 
vazzo, Moliterni & Polidori (1994); from now on these 
are referred to as papers I, II and III, respectively. 

Introduction 

In papers I and II of this series, the conditional joint 
probability distribution of n phases given p (p > n) 
moduli was studied. Large values of n and p are allowed; 
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e.g. n may be the number of strong reflections that are 
usually phased by a modern direct procedure and p may 
be the number of measured reflections. The resulting 
distribution is of exponential type and contains triplet 
and quartet contributions. Contrary to any expectations, 
the distribution is not maximized by the correct set of 
phases as one would expect for sufficiently large values 
of n and p. Accordingly, the combined use of triplets and 
quartets proved of limited usefulness for practical 
applications. 

In paper III, the failure of the distribution was ascribed 
to the strong correlation between triplets and positive 
estimated quartets. A modified expansion of the 
distribution was then proposed that neglects the con- 
tribution of the positive estimated quartets and retains 
terms arising from triplets and negative quartets only. 
The distribution is often maximized by the correct 
solution. Accordingly, an efficient tangent formula was 
described actively using triplet [estimated positive or 
negative by the P10 formula (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984)] and 
negative quartet relationships. 

The main guidelines of the three papers may be 
summarized as follows: if a suitable function may be 
found that is maximum for the correct solution, then a 
tangent formula may be designed that is expected to be 
more efficient than the traditional tangent formula of 
Karle & Hauptman (1956). The function to maximize is 
in practice a figure of merit (FOM), a tool for recognizing 
the correct solution among numerous trial solutions. 

This idea was first formulated in a recent paper by 
Giacovazzo (1993) where a new method is proposed that 
actively uses the information contained in the psi-zero 
triplets in order to drive phases towards the correct 
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values. For reader usefulness, we summarize here 
Giacovazzo's main guidelines and results: 

(a) The Cochran (1952) criterion 

S =  fp3(r )  dr  
v 

= ~ Gh,k ~ COS(<Ph -- ~0kj -- ~0h-kj) = max (1) 
h,kj 

is inadequate for the solution of complex structures 
(Altomare, Cascarano & Giacovazzo, 1992). 

(b) Equation (1) may also be written as 

S = ~ ah COS(~0h -- 0h) = max, 
h 

where O h and c+ h are calculated in accordance with the 
tangent formula (Karle & Hauptman, 1956): 

Gh,k, sin(~0kj + ~0h_kj) 
; T. (2) 

tan O h --- E Gh,kj  COS(qgkj at- ~Oh-kj) = B---h 
J 

with o¢ h = (T2q--B2) 1/2. N o  matter what the prior 
distribution of the ¢p's may be, the tangent formula will 
work to make ~ = Oh and Y~h C~h = max. 

(c) In accordance with (b), the application of the 
tangent formula will lead to various local maxima for the 
figure of merit 

MABS : ~h Oth/~(C¢,), (3) 

among which the correct solution may be found by 
application of FOM's more discriminating than MABS. 
Why then drive phases towards maxima of MABS and 
not towards maxima of more powerful FOM's? This 
would increase the ratio of the number of correct 
solutions to the number of trials. 

(d) The maximization of the psi-zero FOM was chosen 
as an additional pivot of the phasing process. Let 
A~ k, = 2lEkEh-k  [ N-l/z and suppose that IEk [ and 

w , : )  5t w 7 . . 7 .  

IEh -kl  are strong while IE n I is weak (the subscript w 
star~ds j for weak). As soon as the phases ~0 k and ~0 h -k 

• ~ w ) 

become available dunng the refinement process, the 
following quantities should be calculated: 

a~,+ sin ~+ = y~ A~+,k j sinC~j + ~+-kj) 
kj 

o+~, cos Oh+ = ~ A~w,k j COS(~0kj + q~,-kj), 
kj 

from which 

and 

At E hw,k j sin(~j + ~+-kj) 
hw tan0~,+ = k1 T't a'  = (4)  

~ hw,kj COS(~Okj + %~,-kj) B' h~ 
kj 

! C~h+ = (T'h2 q_ B'2 ~1/2 h~! • (5) 

~w is not an estimate of ~0hw (q~w itself could be 
meaningless with IEh~ J = 0) but only a carrying variable 
useful later on in the procedure. Similarly, <~' is not a h~ 
measure of reliability for the relation 0'h~ ~_ q~w but only 
a measure of the consistency (for the running trial) of the 
variables (~0k, + ~0hw-k). 

(e) The criterion 

~' = min (6) h., 
h~ 

was suggested: the analytical conditions are found 
through the equation 

h,+, / 

It should be noted that in (7) the minimum of Y'~+h+ Ot'hw is 
searched via variations of the phases of strong reflec- 
tions. Relation (7) looks for the q~, value that minimizes 
~--~+hw cry,. The combination of (7) ~vith the classical tan- 
gent formula provides the modified tangent formula 

tanOkq---[~Gh,kqSin(~oh--qJh-kq) 

-- ~--~+ Ah,+,k+ sin(O~+ -- qgh.,-k+) ] 
hw 

. [+°**++os(+,_+,_,+> 

--Y~+APK+,kqCO~OIK+--~OK+_kq)] -I h+ 
T" /B'(,+. = k,, (8)  

By analogy with the Karle & Hauptman tangent formula, 
the parameter 

,, (T,,2 B"2 ~ ~/2 O~k+=\ kq + k+; (9) 

is defined. 
( f )  The terms A' in (8) are not concentration 

parameters of von Mises distributions (like the G's). 
Therefore, additional considerations are needed in order 
to balance the terms A' with respect to the terms G. 

The above conclusions proposed by Giacovazzo 
suggest that the results of paper III could be integrated 
with the procedure suggested by (6)-(9) provided a 
function is identified, containing positive and negative 
triplets, negative quartets and psi-zero contributions, 
which is a maximum for the correct solution. The scope 
of this paper is to propose such a new function, to 
investigate its theoretical and practical implications, to 
devise a strategy for the phasing process and to describe 
the first applications. The results presented here justify 
the default active use of psi-zero triplets in the package 
SIR92 (Altomare, Cascarano, Giacovazzo, Guagliardi, 
Burla, Polidori & Camalli, 1994). 
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Table 1. Code name, space group and crystallochemical 
data for test structures 

Structure Space  
code  group Molecular  formula Z 

AMIDE Pbc2 C7HgN302 8 
APAPA P412 t 2 C3oH37 NIsOI6P2 -6H20 8 
AZET Pea21 C21 HI6CINO 8 
BED I4 C26H26N,IO 4 8 
BOBBY P213 Na +.Ca 2+.N(CH2CO 2)]- 4 
CEPHAL C2 ClaH2r NO 4 8 
CIME Cc Ct0Hl8 N6OS 4 
CUIMID P3221 C 6 H 8 N 4Clcu 6 
DIAM P42/n C i4 H2oO 8 
DIOLE 142d Ct0HisO: 16 
ERGO P212121 C28 H440 8 
ERICA P2~ C37 H43 FeO 4 P 2 
FEGAS P63/mmc Fe 2 Ga 2 S 5 2 
GIAC P21/c  CITHt7NO2S 4 
GOLDMAN2 Cc C2s H 16 8 
GRA4 P /  C3o H22 N 2 O 4 2 
HOV i C2/m Prl4 NitrSill 4 
INOS P21/n C6HI20 6-H20 8 
LOGANIN P212121 C IT H26OI0 4 
MBH2 PI C15H240 3 3 
MGHEX P31 C48H6sNI2012Mg'2CIO 4.4CH 3CN 3 
MUNICH 1 C2 C20Hi0 8 
NEWQB P i  C24H20N20 5 4 
NO55 Fdd2 C20 H24 N4 16 
PGE2 PI C20H320 5 I 
POCRO BI 12/ra K 2 Sel6Crlo 1 
QUINOL R3 C 6 H60 2 54 
RIFOLO P21 C39H49NOI3.CHsOH.H20 2 
SALEX P3 Ks.s6Nas.3oH30~s 4 .Fe~ + .- 

[O2(SO4)12 ]. 17.08H20 1 
SCHWARZ P I C46H70027 1 
SELENID P21 C22 H280 2 Se 2 
SKN 1 P31 C 7H16CINO4 3 
SUOA P212121 C28 H3sOi9 4 
TPH C222~ C24 H2o N 2 12 
TUR 10 P6322 CI5 H2402 12 
WINTER2 P21 C52 Hs3 Nl i O16-3CH2 C12 2 

References  for test structures are not g iven  for the sake o f  brevity. The  
reader can find them in paper III. 

A function to maximize 

In paper II1, tests were made on the 36 crystal structures 
quoted in Table 1. It was shown that the maximum of 

S "  = ~ Tif f c o s  tif f + ~ Qij,m COS qijtm 
triplets neg. est. 

quartets 

= S + SAN" (10) 

tends to characterize the correct solution with much 
higher frequency than the maximum of S. The result was 
obtained by using a large number of negative quartets. 
For example, for the eight structures crystallizing in a 
symmorphic space group (BED, CEPHAL, GRA4, 
MBH2, NEWQB, PGE2, QUINOL, SCHWARZ), the 
number of quartets involved in (10) varied (see Table 
111.2) from the minimum value of 4464 for CEPHAL to 
the maximum value of 70 136 for QUINOL. The 
calculation of such a large number of quartets as well 
as their active use in the phasing process are time 
consuming and are not advisable for routine structure 
determination. SIR92 only stores 750 negative quartets. 

Table 2. For the 36 test structures, the trial solutions 
produced by default runs of SIR92 are ranked in order of 

S"  and S Iv 

N O R D ( S ' )  and N O R D ( S  Iv) are the order numbers  o f  the correct 
solution.  If this is not found by a default run o f  SIR92, then N O R D  
refers to the published structure and is g iven in parentheses.  In the last 
two  co lumns ,  Y denotes  the success  o f  the phasing procedure,  N denotes  
a failure. 

Structure 
code  

AMIDE I 
APAPA 1 
AZET i 
BED 7 
BOBBY 1 
CEPHAL 7 
CIME 1 
CUIMID I 
DIAM 1 
DIOLE ! 
ERGO 7 
ERICA I 
FEGAS 1 
G1AC I 
GOLDMAN2 1 
GRA4 3 
HOV I I 
INOS I 
LOGANIN 1 
MBH2 25 
MGHEX (5) 
MUNICHI (12) 
NEWQB 1 
NO55 2 
PGE2 1 
P(X~RO 1 
QUINOL I 
RIFOLO 1 
SALEX I 
SCHWARZ (25) 
SELENID 20 
SKN 1 1 
S UOA ( 1 ) 
TPH 1 
TURI0 1 
WINTER2 (24) 

N O R D ( S " )  N O R D ( S  Iv) P I 0  

! 
1 
I 
I 
1 
1 
1 
I 
1 
1 
i 
1 
1 
1 
1 
4 
1 
I 
1 
! 

(1) 

(I)  
1 
I 

(i) 

+ N Q  P l 0  + NQ 

Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
N N 
N Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
Y Y 
N Y 
Y Y 
Y Y 
N N 
Y Y 
Y Y 
N N 

+ PSI0 

Thus, it is of non-negligible interest to check if the 
maximum of S'" will characterize with high frequency 
the correct solution even when the number of negative 
quartets is relatively small (i.e. only a maximum of 750 
as for SIR92). With this in view, we used a pre-release of 
SIR92 (only triplets and negative quartets employed) for 
ranking according to S" the trial solutions produced for 
all 36 test structures. In Table 2, we give the order 
number [NORD(S')] of the correct solution. If the 
solution is not found then NORD(S") refers to S" as 
calculated for the published structure and is given in 
parentheses. If NORD(S") for the published structure is 
large, it cannot be expected that S" is a maximum for the 
trial corresponding to the correct solution possibly found 
in a non-default run. We see that NORD(S')  is often 
different from unity: in these cases, the tangent formula 
(111.6) perversely works towards false solutions and the 
correct solution may sometimes be found because of the 
constraints dictated by the starting set of phases. If psi- 
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zero triplets are taken into account, a possible extension 
of (10) should be 

s l V  E Tiff c o s  tif f + ~ O~'lm COS qijlm -- Z Or' hw 
triplets neg. est. hw 

quartets 

I ~-'] c~ h -- ~]o( (11) - -  ~ h.." 
h h~ 

Since cr' does not contain the term Rhw (while R h is hw 
present in ah), we replace (11) by 

s I V  = 1 E Oth/Rh - E a' h w • 
h h~ 

We rank the trial solutions produced by SIR92 in order of 
S w and we obtain the third column of Table 2, where 
NORD(S Iv) is the order number of the correct solution. 
S Iv is a much more efficient figure of merit: for all the 
structures but GRA4, the maximum value of S w 
corresponds to the correct solution. Consequently, a 
tangent formula based on the combined use of P10 triplet 
estimates, negative quartet estimates and psi-zero triplets 
is expected to be in principle more efficient than (III.6). 

P(Ahw,L) = O, (Zh,) 

A' P(hw,kq) = 0  

( ' )  when 0thw > C~h~ 

otherwise. 

D l(X ) = ll(x)/lo(x ) is the ratio of the two modified 
Bessel functions of order 1 and 0, respectively. 

The proposed tangent formula is therefore 

tan0ko = [h '~  Gh'kq s i n ( ~  - (Ph-kq) 

- E Ph,A'hw,k~ sin(0'h~ -- ~0hw-kq)] 
hw 

x [ cos( . - 

- E PhwA'hw,kq COS (fib, -- ¢Ph,-kq)] -1 
hw 

"/B" ( 1 2 )  Tkg / kq 

with reliability parameter 

" : , ' : r" : '  Otkq ~ kq -'IC B 

T h e  n e w  t a n g e n t  f o r m u l a  

The preceding sections suggest that (8) may be the basis 
for a new tangent formula provided a sound use is 
made of the terms A~,~.kg. The problem to be solved is 
how to combine them with the probabilistic t e r m s  Gh,kq. 
In order to obtain some insight into the problem, we 
selected three from the set of 36 test structures and we 
calculated, for typical trial solutions and for the true 
structure, the distribution of the parameter 

z..  = 

where (ct~,w) = (zr'/2/2)cr~ w is the expected value of a' hw 
in non-centrosymmetnc space groups and 
O-a/h2 -- ~ "~r A'2 

-- /~j-:l hw,k q IS the variance (Cascarano, 
Gi~covazzo & Viterbo, 1987). 

The outcome is shown in Fig. 1 for the trial solutions 
and in Fig. 2 for the true one. It is seen that the number of 
weak reflections with Zh~ larger than a given threshold, 
for example with Zh, > 2, is a non-negligible percentage 
for all the trial solutions while it is relatively small when 
the correct solutions are considered. An efficient phasing 
procedure should contribute to make the number of weak 
reflections with a'hw much larger than (a[~) a small 
percentage of the number of weak reflections. A[ kq will 
efficiently contribute to modify the phase value Okq 
suggested by P 10 and by negative quartet estimates only 
if the ratio t~,w/tr, e,, is large enough or, in other words, if 
a '  is remarkably larger than its expected value. In this hw 
case, the psi-zero terms have a beneficial feedback effect 
on the values of the phases of the strong reflections 
contributing to them. We then propose the following 
weighting scheme for A~,,,k • the weight P is defined by 

l,(~) 

V(z) 

0.14 

O. 13 

01 !  

0 tO 

0O8 

006 

0 05 

0.03 

002 

000  

.' '~ CEPHAI, 
: ', , . . . . .  MUNIC 1 
" ! . . . . . . .  SCIIWARZ 

.~t-" 

• '~ " ' ' 

' 1-.~ b ,, " \ 

- - - "? "  "A. ] " / / 

J ~ ~.'L--~_ _h,:.. ' ~ ' "  
0 0 1 0 2 0 3 0 40  5 0  6 0 7.0 8 0 90  10 0 

Z 

Fig. 1. Distribution of z for typical trial solutions. 

0.32 \ 

028 
CEPHAL 

024 : 2• M U N I C I  
• SCHWARZ . \ 

0.20 

016 J 
0.12 

0.08 

004  

0 0 0 5 1 0 1 5 2 0 25  30  3.5 4.0 45  5 0 
Z 

Fig. 2. Distribution of z using true phases. 
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Applications 

In paper III, a pre-release of SIR92 was applied in a 
default setting (five symbolic phases in the starting set to 
permute according to the magic-integers approach) to the 
36 crystal structures quoted in Table 1 by using in an 
active way triplets estimated positive and negative by the 
P10 formula and negative quartets. The result is shown 
in the fourth column of Table 2: Y means that the solu- 
tion was found, N that no solution was obtained by the 
default run. Only five structures, MGHEX, MUNICH 1, 
SCHWARZ, SUOA and WINTER2 were not solved. 

SIR92 has now been modified in order to allow the 
active use of the psi-zero triplets both when the magic- 
integer-permutation method is applied and when the 
random-starting-set technique (Baggio, Woolfson, 
Declercq & Germain, 1978) is used. Equation (12) is 
applied in the phasing process only when the number of 
determined phases is sufficiently large, that is when a 
statistically meaningful set of psi-zero triplets is involved 
in the calculations. The outcome is shown in the last 
column of Table 2: only MGHEX, SUOA and 
WINTER2 are still unsolved while MUNICH1 and 
SCHWARZ are now routinely solved. It is worthwhile 
noting that MGHEX, SUOA and WINTER2 are easily 
solved in 200 trials if (12) is combined with the random- 
starting-set technique. 

This success convinced us to modify the default run of 
SIR92 by including the active use of psi-zero triplets. 

Against the loss of enantiomorph 

We have seen in the preceding section that in some cases 
(MUNICH1 and SCHWARZ) the active use of the psi- 
zero triplets makes the difference between success and 
failure. Some questions arise: 

(1) How does the active use of the psi-zero relation- 
ships influence the FOM's? As a general trend, the use of 
(12) will drive a'hw towards (a~,w) for each h ' .  When this 
ideal situation is attained, the psi-zero FOM in SIR92 
(say PSICOMB) will be unity. At the same time, t~, 
calculated for strong reflections will tend towards (ah) 
for any h. Thus, the general effect of the active use of 
psi-zero triplets in the phasing process is the improve- 
ment of the FOM's, both for the correct and for the 
incorrect solutions. This is confirmed in Table 3 where 
SIR92 FOM's for SCHWARZ are shown for the ten 
solution with the highest values of the combined FOM 
(CFOM). While in Table 3(a) (passive use of psi-zero 
triplets) no solution is found, in Table 3(b) the first four 
sets are correct solutions. Sets five to ten are false 
solutions but they have values of CFOM larger than in 
Table 3(a). It may be concluded that (12) always works 
towards optimizing the FOM's, and sometimes it works 
so well that the correct solution is found. 

(2) Does the active use of psi-zero triplets help against 
the loss of enantiomorph? In the last column of Table 

Table 3. Comparison of two different phase-determina- 
tion tests on SCHWARZ 

(a) F O M ' s  for ten trial so lut ions  o f  S C H W A R Z  with the highest  value o f  
C F O M  as ob ta ined  by  SIR92 by the act ive use o f  tr iplets  and negat ive  
quar te t  re la t ionships  

M A B S  A L C O M B  P S C O M B  C P H A S E  C F O M  Set  (~e)  

I i.323 0.528 0.125 0.304 0.444 29.0 
2 1.377 0.517 0.074 0.189 0.395 
3 1.339 0.490 0.049 O. ! 08 0.348 29.2 
4 1.423 0.472 0.036 0.073 0.323 
5 1.393 0.465 0.046 0.083 0.322 
6 ! .402 0.462 0.046 0.086 I).322 27. I 
7 1.410 0.470 0.038 0.068 0.320 
8 1.400 0.430 0.043 0.059 0.292 24.1 
9 1.419 0.441 0.029 0.041 0.292 27.6 
10 1.426 0.438 0.026 0.042 0.290 27.4 

(b) F O M ' s  for ten trial solut ions  o f  S C H W A R Z  with highest  value  o f  
C F O M  as obta ined  by SIR92 by use o f  (12) 

Set  M A B S  A L C O M B  P S C O M B  C P H A S E  C F O M  

1 1.296 0.857 0.655 1.000 0.911 
2 1.298 0.853 0.655 1.000 0.908 
3 1.29 ! 0.838 0.638 1.000 0.898 
4 i .255 0.790 0.631 0.999 0.868 
5 i .309 0.665 0.200 0.502 0.604 
6 1.241 0.611 0.270 0.570 0.596 
7 1.299 0.659 0.216 0.483 0.593 
8 1.159 0.672 0.471 0.790 0.591 
9 1.294 0.615 0.233 0.543 0.588 
I0 1.295 0.608 0.221 0.539 0.582 

3(a), the average phase value (~e) is given for triplets 
that are expected to be enantiomorph sensitive (triplets 
with reliability parameter G _~ 0 when evaluated by the 
P10 formula). In the ideal case, (~e) should be close to 
90°: when the enantiomorph is lost for a given trial, the 
values in column 7 are expected to be close to zero. 
SIR92 signals these events by outputting the values of 
(~e) when this is lower than 30 °. While, in Table 3(b), 
no solution, wrong or correct, loses the enantiomorph, 
several sets in Table 3(a) do. 

(3) When both (III.6) and (12) solve the structure, are 
the phases determined by (12) more accurate than those 
defined by (III.6)? The analysis of our tests suggests that, 
in most cases, the phase sets have equivalent quality 
unless, because of the space group or of some specific 
pseudocentrosymmetry, the structure shows an evident 
tendency to lose the enantiomorph. In this case, the 
active use of the psi-zero triplets curbs this tendency: 
indeed, just those strong reflections that mainly con- 
tribute to fix 0' and to generate too high values for a '  hw hw 
are subject in (12) to non-negligible feedback. 

An instructive test in this sense is AZET, which has 
been intensely studied by Lessinger (1976) because of its 
instability under tangent refinement. Cycles of traditional 
tangent refinement (Cochran estimates) modify the true 
phases to values with an average phase error of 36 ° 
(partial loss of enantiomorph). If P10 triplet estimates 
and negative quartets are actively used, the final average 
error is 26 ° while the additional use of the psi-zero 
triplets curbs the average error to 21 ° . 
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(4) Is the active use of psi-zero triplets always 
advisable? Often, structures suffering by pseudotransla- 
tional symmetry show a bad psi-zero FOM, even for the 
correct solution. In this case, a phasing process that tries 
to improve the psi-zero FOM will hinder rather than 
favour the crystal structure solution. If structure factors 
are renormalized and triplet reliabilities are re-estimated 
by using the information on pseudotranslational symme- 
try as prior (Cascarano, Giacovazzo & Luir, 1987), then 
the psi-zero FOM is usually better and use of (12) works 
fine. In SIR92, in order to avoid the psi-zero contribution 
to (12) overcoming the contributions of the strong triplets 
and the negative quartets, we use a maximum of NLAR/3 
weak reflections to construct psi-zero triplets (NLAR is 
the number of reflections used for constructing strong 
triplets). In this way, the active use of psi-zero triplets 
does not hinder the crystal structure solution also for 
CIME, CUIMID, ERICA, FEGAS, HOV1 and POCRO, 
which suffer from pseudotranslational symmetry. 

Concluding remarks 

The psi-zero triplets have thus far been considered as a 
tool for calculating a powerful figure of merit (Cochran 
& Douglas, 1957) for recognizing the correct phase set 
among numerous trial solutions. In a recent paper, 
Giacovazzo (1993) proposed their active use in the 
phasing process: in this paper, we describe the theoretical 

background necessary for a reasonable active use of the 
psi-zero triplets and the first applications of the method. 

The authors thank Miss C. Chiarella for technical 
support. 
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Abstract 

The exact diffraction curve of the Fibonacci superlattice 
is calculated using the semi-kinematical approximation 
of dynamical X-ray diffraction. The properties of the 
discrete Fourier transform of quasiperiodically arranged 
layers are employed to derive explicit approximate 
formulae for the diffracted intensity and the angular 
positions of peaks. The exact and approximate curves 
are compared by a numerical simulation and a good 
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agreement is found. The measurement of the diffraction 
curve was performed on the generalized Fibonacci 
superlattice built by stacked Fibonacci generations. This 
superlattice belongs to the same class of local isomor- 
phism as the Fibonacci superlattice if both are infinitely 
thick. The explicit approximate formulae enabled the 
fitting of the structural parameters of the superlattice 
even in the low-resolution experimental set-up when the 
fitting of the whole measured diffracti(m curve was not 
possible. 
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